Search results

1 – 5 of 5
Article
Publication date: 10 August 2018

Esmail Rezaei-Seresht, Aboulfazl Salimi and Behnam Mahdavi

The purpose of this paper is synthesis and evaluation of antioxidant and antibacterial activities of a series of new azo dyes derived from 4-aminostilbene.

Abstract

Purpose

The purpose of this paper is synthesis and evaluation of antioxidant and antibacterial activities of a series of new azo dyes derived from 4-aminostilbene.

Design/methodology/approach

First, the starting material 4-aminostilbene was prepared via two successive Wittig and reduction reactions from 4-nitrobenzyl bromide. The obtained 4-aminostilbene was then reacted with some phenols under the normal azo coupling reaction conditions to give five new azo products. Antioxidant activity of the azo compounds was determined by radical scavenging assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Also, the antimicrobial activity of the compounds against one gram-positive and eight gram-negative strains was evaluated based on the inhibition zone using disc diffusion assay.

Findings

The structures of the azo dyes were identified and characterized by fourier-transform Infrared, 1H nuclear magnetic resonance (NMR) and ultraviolet-visible (UV-V) is spectroscopic methods. All the compounds showed higher antioxidant activity than ascorbic acid (Asc) and butylated hydroxytoluene (BHT) as positive controls. Moreover, the compounds showed lower antibacterial activity than the standard antibiotic vancomycin.

Research limitations/implications

Excellent antioxidant activity, along with antibacterial activity against Streptococcus pneumoniae and Pseudomonas aeruginosa, was observed for the two synthesized azo dyes.

Originality/value

Five novel azo dyes based on 4-aminostilbene were synthesized. The dyes have a highly p-extended conjugated structure comprising the phenolic and stilbenic segments, and they indicated good antioxidant activity, so that the two dyes (2c and 2d) even showed much more scavenging activity compared to BHT which is used as an antioxidant agent in food industries. These compounds with highest antioxidant activity also inhibited the growth of S. pneumoniae and P. aeruginosa.

Details

Pigment & Resin Technology, vol. 48 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 July 2022

Pouyan Mahdavi-Roshan and Seyed Meysam Mousavi

Most projects are facing delays, and accelerating the pace of project progress is a necessity. Project managers are responsible for completing the project on time with minimum…

Abstract

Purpose

Most projects are facing delays, and accelerating the pace of project progress is a necessity. Project managers are responsible for completing the project on time with minimum cost and with maximum quality. This study provides a trade-off between time, cost, and quality objectives to optimize project scheduling.

Design/methodology/approach

The current paper presents a new resource-constrained multi-mode time–cost–quality trade-off project scheduling model with lags under finish-to-start relations. To be more realistic, crashing and overlapping techniques are utilized. To handle uncertainty, which is a source of project complexity, interval-valued fuzzy sets are adopted on several parameters. In addition, a new hybrid solution approach is developed to cope with interval-valued fuzzy mathematical model that is based on different alpha-levels and compensatory methods. To find the compatible solution among conflicting objectives, an arithmetical average method is provided as a compensatory approach.

Findings

The interval-valued fuzzy sets approach proposed in this paper is denoted to be scalable, efficient, generalizable and practical in project environments. The results demonstrated that the crashing and overlapping techniques improve time–cost–quality trade-off project scheduling model. Also, interval-valued fuzzy sets can properly manage expressions of the uncertainty of projects which are realistic and practical. The proposed mathematical model is validated by solving a medium-sized dataset an adopted case study. In addition, with a sensitivity analysis approach, the solutions are compared and the model performance is confirmed.

Originality/value

This paper introduces a new continuous-based, resource-constrained, and multi-mode model with crashing and overlapping techniques simultaneously. In addition, a new hybrid compensatory solution approach is extended based on different alpha-levels to handle interval-valued fuzzy multi-objective mathematical model of project scheduling with influential uncertain parameters.

Details

Kybernetes, vol. 52 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 March 2021

Jaber Valizadeh and Peyman Mozafari

Production of waste has been increased exponentially due to world industrialization and urban and machine life expansion. On the other hand, the outbreak of the COVID-19…

Abstract

Purpose

Production of waste has been increased exponentially due to world industrialization and urban and machine life expansion. On the other hand, the outbreak of the COVID-19 coronavirus quickly became a global crisis. This crisis has added a large amount of waste to urban waste. The purpose of this study is to create cooperation between municipal waste collector contractors.

Design/methodology/approach

Thus, a mathematical model is proposed under uncertain conditions, which includes the volume of municipal waste and infectious waste including personal protective equipment and used equipment for patients. To reduce total costs, the results are evaluated with four cooperative game theory methods such as Shapley value, t value, core center and least core. Ultimately, the saved cost by cooperation in each coalition is allocated fairly among the contractors. Finally, a comparison was made between the solution methods based on the value of the objective function and the solution time.

Findings

The results indicate that the proposed cooperative method increases cost savings and reduces the fine of residual waste. Therefore, it can be mentioned that this kind of cooperation would finally result in more incentives for contractors to form larger coalitions. Genetic algorithms were used to solve the large-scale model.

Originality/value

The proposed model boosts the current understanding of waste management in the COVID-19 pandemic. The paper adds additional value by unveiling some key future research directions. This guidance may demonstrate possible existing and unexplored gaps so that researchers can direct future research to develop new processes.

Article
Publication date: 9 December 2020

Nehal Elshaboury and Mohamed Marzouk

There have been numerous efforts to tackle the problem of accumulated construction and demolition wastes worldwide. In this regard, this study develops a model for identifying the…

Abstract

Purpose

There have been numerous efforts to tackle the problem of accumulated construction and demolition wastes worldwide. In this regard, this study develops a model for identifying the optimum fleet required for waste transportation. The proposed model is validated through a case study from the construction sector in New Cairo, Egypt.

Design/methodology/approach

Various fleet combinations are assessed against the time, cost, energy and emissions generated from waste transportation. Genetic algorithm optimization is performed to select the near-optimum solutions. Complex proportional assessment and operational competitiveness rating analysis decision-making techniques are applied to rank Pareto frontier solutions. These rankings are aggregated using an ensemble approach based on the half-quadratic theory. Finally, a sensitivity analysis is implemented to determine the most sensitive attribute.

Findings

The results reveal that the optimum fleet required for construction and demolition wastes (CDW) transportation consists of one wheel loader of bucket capacity 2.5 cubic meters and nine trucks of capacity 22 cubic meters. Furthermore, consensus index and trust level of 0.999 are obtained for the final ranking. This indicates that there is a high level of agreement between the rankings. Moreover, the most sensitive criterion (i.e. energy) is identified using a sensitivity analysis.

Originality/value

This study proposes an efficient and effective construction and demolition waste transportation strategy that will lead to economic gains and protect the environment. It aims to select the optimum fleet required for waste transportation based on economic, social and environmental aspects. The usefulness of this study is establishing a consensual decision through the aggregation of conflicting decision makers' preferences in waste transportation and management.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 October 2019

Soroush Sadripour, Mohammad Estajloo, Seyed Abdolmehdi Hashemi, Ali J. Chamkha and Mahmoud Abbaszadeh

The purpose of this study is to reduce energy consumption in bakeries. Due to fulfill this demand, quite a few parameters such as energy and exergy efficiency, energy waste and…

Abstract

Purpose

The purpose of this study is to reduce energy consumption in bakeries. Due to fulfill this demand, quite a few parameters such as energy and exergy efficiency, energy waste and fuel consumption by different traditional flatbreads bakeries (Sangak, Barbari, Taftun and Lavash should be monitored and their roles should not be neglected.

Design/methodology/approach

In the present study, experimental measurements and mathematical modeling are used to scrutinize and investigate the effects of the aforementioned parameters on energy consumption by bakeries.

Findings

The results show that by doing reported methods in this paper, the wasted energy of the walls can be decreased by about 65 per cent; and also, by controlling the combustion reaction to perform with 5 per cent excess air, the wasted energy of excess air declines by about 90 per cent. And finally, the energy and exergy efficiency of bakeries is increased, and as a result, the annual energy consumption of Sangak, Barbari, Taftun and Lavash bakeries diminish about 71, 59, 57 and 40 per cent, respectively.

Originality/value

As evidenced by the literature review, it can be observed that neither numerical studies nor experimental investigations have been conducted about energy and exergy analyses of Iranian machinery traditional flatbread bakeries. It is clear that due to a high preference of Iranians to use the traditional bread and also the popularity of baking this kind of bread in Iran, if it is possible to enhance the traditional oven conditions to decrease the loss of natural gas instead of industrializing the bread baking, the energy consumption in the country can be optimized.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 5 of 5